Grundlagen:

Ergänze jeweils Name bzw. Formel:

Schwefeldioxid	***
***	NaCl
Natriumhydroxid	
	NH ₃
Methan	
	CCI ₄
Kupfersulfat	
	HCI

Definiere Ionisierungsenergie:

...

Gib je 3 Beispiele von Elementen an:

Mit hoher erster E_{lon} : ... Mit tiefer erster E_{lon} : ...

Welches Vorzeichen hat diese Energie? ...

Definiere Elektronenaffinität:

. . .

Welches Vorzeichen hat diese Energie?

Elektronegativität:

Definiere EN: ...

Welche drei Elemente haben die höchsten EN-Werte:

- (1)
- (2)
- (3)

Nenne drei Elemente mit sehr niedrigen EN-Werten

• • • •

Schreibe die EN-Werte zu den Zeichen:

 $\begin{array}{lll} N=\dots & & Na=\dots \\ Zn=\dots & P=\dots \\ Mg=\dots & K=\dots \\ Ca=\dots & C=\dots \end{array}$

Polare Bindung:

Ergänze die Partialladungen in

C-O

O-N

F-O

H-N

O-Si

F-P

Zeichne schematisch das Dipolmoment ein:

C-O

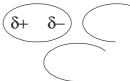
O-N

F-O

H-N

O-Si

Polare Moleküle:


Zeichne Bindungsdipolmomente ein und das resultierende Molekül-Dipolmoment:

$$H \subset H \longrightarrow H \longrightarrow H \subset M$$

Dipol-Dipol-Anziehung: Vervollständige die Skizze:

Berechne die Elektronegativitätsdifferenz von:

Bindung	Δ EN =
С–Н	
О–Н	
N-H	
Cl–H	
С-О	
F–H	
Cu–Br	